In this article, we would like to give an example of how to create a very simple drilldown map with leafdown.
The goal is to create a map that:

  • shows the GDP (gross domestic product) of the federal states of Germany
  • allows the user to drill down to the administrative districts of selected federal states.

Let’s first load the libraries we are going to use for our app.

(Note that the shinyjs package is loaded for some automatic warning messages that the leafdown map can return to the user of the shiny app.)

SpatialPolygonsDataFrames

leafdown requires a list of SpatialPolygonsDataFrames (spdfs) for the regions we want to display on our map.

To get these spdfs we can use the getData function of the raster package. For “Germany”, level = 1 contains the spdf for the federal states and level = 2 the spdf for the administrative districts.

If an spdf comes from a different source, it is important that the structure is identical to the spdfs that come from the raster package.

ger1 <- raster::getData(country = "Germany", level = 1)
ger2 <- raster::getData(country = "Germany", level = 2)

The spdf for level = 2 does not display all German umlauts correctly. Therefore we adjust some names so that we can assign our data more easily later on.

ger2@data[c(76, 99, 136, 226), "NAME_2"] <- c(
  "Fürth (Kreisfreie Stadt)",
  "München (Kreisfreie Stadt)",
  "Osnabrück (Kreisfreie Stadt)",
  "Würzburg (Kreisfreie Stadt)"
)

Let’s now create our spdfs_list which we can provide to leafdown in our shiny app. It is important that spdfs_list is ordered such that the spdf of the highest map level (in our case the federal states) is the first list element and so on.

list (spdfs_list)
│   
└───spdf (spdf of first map level)
│
└───spdf (spdf of second map level)
spdfs_list <- list(ger1, ger2)

Data

For this app, we will use the example data sets that come with the leafdown package. The data.frame gdp_2014_federal_states contains the GPD of 2014 for the federal states and gdp_2014_admin_districts for the administrative districts of Germany.

head(gdp_2014_federal_states)
#>       Federal_State GDP_2014
#> 1 Baden-Württemberg    41473
#> 2            Bayern    42226
#> 3            Berlin    34395
#> 4       Brandenburg    25980
#> 5            Bremen    45173
#> 6           Hamburg    58950
head(gdp_2014_admin_districts)
#>     Admin_District GDP_2014
#> 1    Wilhelmshaven    40000
#> 2            Herne    22500
#> 3      Schweinfurt    93900
#> 4       Kaufbeuren    32300
#> 5            Peine    20700
#> 6 Kempten (Allgäu)    54500

(For more information about the data, please see ?gdp_2014_federal_states or ?gdp_2014_admin_districts respectively)

Leafdown workflow

In this part, we sketch and explain the typical leafdown workflow.

(Please note that the execution of the code snippets in this chapter only works within a shiny app)

Initialization

As usual for R6 classes, we create a new object of our Leafdown class using the new() method.
For this we have to specify the:

  • spdfs_list: The list containing the spdfs of both map levels.
  • map_output_id: The output_id we specify in our ui via leafletOutput("<<map_output_id>>")
  • input: The input from the shiny app
  • join_map_levels_by (optional). A named vector with the columns by which the map levels should be joined. In case of two map levels this is set by default to c(“GID_1” = “GID_1”), which is appropriate when ‘Provinces/States’ is the first and ‘Districts’ the second map level. If you use ‘Countries’ as first and ‘Provinces/States’ as second level you have to set it to c("ISO" = "GID_0"). For more information, see the Section Joining map levels in the Multilevel article.
my_leafdown <- Leafdown$new(spdfs_list, map_output_id = "leafdown", input = input)

Data

In the next step, we add data to our leafdown object. Using the attribute $curr_data we can retrieve the data of the current map level. At the beginning $curr_data only contains metadata. With metadata, we refer to the data that describes the polygons, such as region names, region IDs, etc. The metadata is automatically set with the spdf_list[[i]]@data where i is the current map level.

metadata <- my_leafdown$curr_data
print(head(metadata))
#>   GID_0  NAME_0   GID_1            NAME_1 VARNAME_1 NL_NAME_1
#> 1   DEU Germany DEU.1_1 Baden-Württemberg      <NA>      <NA>
#> 2   DEU Germany DEU.2_1            Bayern   Bavaria      <NA>
#> 3   DEU Germany DEU.3_1            Berlin      <NA>      <NA>
#> 4   DEU Germany DEU.4_1       Brandenburg      <NA>      <NA>
#> 5   DEU Germany DEU.5_1            Bremen      <NA>      <NA>
#> 6   DEU Germany DEU.6_1           Hamburg      <NA>      <NA>
#>                 TYPE_1 ENGTYPE_1 CC_1 HASC_1
#> 1                 Land     State   08  DE.BW
#> 2            Freistaat      <NA>   09  DE.BY
#> 3                 Land     State   11  DE.BE
#> 4                 Land     State   12  DE.BR
#> 5     Freie Hansestadt     State   04  DE.HB
#> 6 Freie und Hansestadt     State   02  DE.HH

Now we can add new columns for variables we want to display on our map to the existing metadata. It is important that the initial metadata remains unchanged and no rows are removed.

new_data <- metadata %>% dplyr::left_join(gdp_2014_federal_states, by = c("NAME_1" = "Federal_State"))

After creating our new data set, we give it to our leafdownobject with the $add_data method.

my_leafdown$add_data(new_data)

The current data of a leafdown object can be retrieved via the $curr_data attribute.

print(head(my_leafdown$curr_data))
#>   GID_0  NAME_0   GID_1            NAME_1 VARNAME_1 NL_NAME_1
#> 1   DEU Germany DEU.1_1 Baden-Württemberg      <NA>      <NA>
#> 2   DEU Germany DEU.2_1            Bayern   Bavaria      <NA>
#> 3   DEU Germany DEU.3_1            Berlin      <NA>      <NA>
#> 4   DEU Germany DEU.4_1       Brandenburg      <NA>      <NA>
#> 5   DEU Germany DEU.5_1            Bremen      <NA>      <NA>
#> 6   DEU Germany DEU.6_1           Hamburg      <NA>      <NA>
#>                 TYPE_1 ENGTYPE_1 CC_1 HASC_1 GDP_2014
#> 1                 Land     State   08  DE.BW    41473
#> 2            Freistaat      <NA>   09  DE.BY    42226
#> 3                 Land     State   11  DE.BE    34395
#> 4                 Land     State   12  DE.BR    25980
#> 5     Freie Hansestadt     State   04  DE.HB    45173
#> 6 Freie und Hansestadt     State   02  DE.HH    58950

Draw map

To draw the map we use the method $draw_leafdown. The specified arguments in the method are internally handed over to the addPolygons function of leaflet. Therefore attributes like fillColor or opacity can be specified just as for a usual leaflet map.

map <- my_leafdown$draw_leafdown(
  fillColor = ~ colorNumeric("Greens", GDP_2014)(GDP_2014)
) 

The $draw_leafdown method returns a usual leaflet map. This also allows us to add a legend or a background to our map.

map <- map %>%
  addLegend(
    pal = colorNumeric("Grees", data$GDP_2014),
    values = data$GDP_2014
  )

Selection

Let’s now have look at what happens when a user clicks on a region. Internally a leafdown object has an observer for shape_click events. Once a user clicks on a certain region, this region becomes “active” and its boundaries on the map are highlighted. (If the clicked region is already active, it becomes inactive). We can retrieve the data of active regions via the $curr_sel_data attribute. Assuming that the user clicked on Bavaria and Hesse than $curr_sel_data would look as follows:

my_leafdown$curr_sel_data()
#>   GID_0  NAME_0   GID_1 NAME_1 VARNAME_1 NL_NAME_1    TYPE_1 ENGTYPE_1 CC_1
#> 2   DEU Germany DEU.2_1 Bayern   Bavaria      <NA> Freistaat      <NA>   09
#> 7   DEU Germany DEU.7_1 Hessen     Hesse      <NA>      Land     State   06
#>   HASC_1 GDP_2014
#> 2  DE.BY    42226
#> 7  DE.HE    41809

Note that this attribute is a reactiveValue that allows to update graphs and other elements upon a user click. For more on the connection to other elements please see the following tutorial.

Drilldown

Using the $drill_down method we can now drill down to the admin districts of the active federal states.

my_leafdown$drill_down()

This will update the currently active spdf (my_leafdown$curr_spdf) which then only contains polygons and corresponding metadata for regions whose parents were active in the upper (previous) map level. In our case the parents are “Bavaria” and “Hesse”, so only spdfs of admin districts within these federal states will be contained in my_leafdown$curr_spdf.

length(my_leafdown$curr_spdf)
#> [1] 2

Data

The updated data can then again be retrieved via $curr_data.

my_leafdown$drill_down()
metadata <- my_leafdown$curr_data
head(metadata)
#>    GID_0  NAME_0   GID_1 NAME_1 NL_NAME_1     GID_2                     NAME_2
#> 46   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.1_1          Aichach-Friedberg
#> 47   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.2_1                  Altötting
#> 48   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.4_1                     Amberg
#> 49   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.3_1            Amberg-Sulzbach
#> 50   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.6_1                    Ansbach
#> 51   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.5_1 Ansbach (Kreisfreie Stadt)
#>    VARNAME_2 NL_NAME_2           TYPE_2 ENGTYPE_2  CC_2   HASC_2
#> 46      <NA>      <NA>        Landkreis  District 09771 DE.BY.AF
#> 47      <NA>      <NA>        Landkreis  District 09171 DE.BY.AT
#> 48      <NA>      <NA> Kreisfreie Stadt  District 09361 DE.BY.AM
#> 49      <NA>      <NA>        Landkreis  District 09371 DE.BY.AS
#> 50      <NA>      <NA>        Landkreis  District 09571 DE.BY.AN
#> 51      <NA>      <NA> Kreisfreie Stadt  District 09561 DE.BY.AN
unique(metadata$NAME_1)
#> [1] "Bayern" "Hessen"

Just as before we can add new columns for variables we want to display on our map to the existing metadata.

new_data <- metadata %>% 
  dplyr::left_join(gdp_2014_admin_districts, by = c("NAME_2" = "Admin_District"))
my_leafdown$add_data(new_data)

Again, the current data can be retrieved via the $curr_data attribute.

head(my_leafdown$curr_data)
#>   GID_0  NAME_0   GID_1 NAME_1 NL_NAME_1     GID_2            NAME_2 VARNAME_2
#> 1   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.1_1 Aichach-Friedberg      <NA>
#> 2   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.2_1         Altötting      <NA>
#> 3   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.4_1            Amberg      <NA>
#> 4   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.3_1   Amberg-Sulzbach      <NA>
#> 5   DEU Germany DEU.2_1 Bayern      <NA> DEU.2.6_1           Ansbach      <NA>
#>   NL_NAME_2           TYPE_2 ENGTYPE_2  CC_2   HASC_2 GDP_2014
#> 1      <NA>        Landkreis  District 09771 DE.BY.AF    24100
#> 2      <NA>        Landkreis  District 09171 DE.BY.AT    45200
#> 3      <NA> Kreisfreie Stadt  District 09361 DE.BY.AM    50000
#> 4      <NA>        Landkreis  District 09371 DE.BY.AS    24300
#> 5      <NA>        Landkreis  District 09571 DE.BY.AN    52500

Draw map

After adding GDP_2014 to our admin district data, we can again draw our map. Note that all non-active parent regions grayed out in the background.

my_leafdown$draw_leafdown(
  fillColor = ~ colorNumeric("Blues", GDP_2014)(GDP_2014)
)

Drillup

Using the $drill_up method we can now drill back up to the federal states. Note that the active regions (we selected before we drilled down) are still active.

my_leafdown$drill_down()

Data

To draw the map we first have to add our federal states data again.

new_data <- metadata %>% left_join(gdp_2014_federal_states, by = c("NAME_1" = "Federal_State"))

Draw map

And again we can draw our map just as usual.

map <- my_leafdown$draw_leafdown(
  fillColor = ~ colorNumeric("Blues", GDP_2014)(GDP_2014)
) 

We can use the keep_zoom() method to keep the current zoom level as well as the current view center of the user after the map is drawn.

map <- my_leafdown$keep_zoom(map, input)

Shiny App

Preparation

library(leafdown)
library(leaflet)
library(shiny)
library(dplyr)
library(shinyjs)
ger1 <- raster::getData(country = "Germany", level = 1)
ger2 <- raster::getData(country = "Germany", level = 2)
ger2@data[c(76, 99, 136, 226), "NAME_2"] <- c(
  "Fürth (Kreisfreie Stadt)",
  "München (Kreisfreie Stadt)",
  "Osnabrück (Kreisfreie Stadt)",
  "Würzburg (Kreisfreie Stadt)"
)
spdfs_list <- list(ger1, ger2)

UI

ui <- shiny::fluidPage(
  tags$style(HTML(".leaflet-container {background: #ffffff;}")),
  useShinyjs(),
  actionButton("drill_down", "Drill Down"),
  actionButton("drill_up", "Drill Up"),
  leafletOutput("leafdown", height = 600),
)

Server

# Little helper function for hover labels
create_labels <- function(data, map_level) {
  labels <- sprintf(
    "<strong>%s</strong><br/>%g € per capita</sup>",
    data[, paste0("NAME_", map_level)], data$GDP_2014
  )
  labels %>% lapply(htmltools::HTML)
}
server <- function(input, output) {
  my_leafdown <- Leafdown$new(spdfs_list, "leafdown", input)
  update_leafdown <- reactiveVal(0)

  observeEvent(input$drill_down, {
    my_leafdown$drill_down()
    update_leafdown(update_leafdown() + 1)
  })

  observeEvent(input$drill_up, {
    my_leafdown$drill_up()
    update_leafdown(update_leafdown() + 1)
  })

  output$leafdown <- renderLeaflet({
    update_leafdown()
    meta_data <- my_leafdown$curr_data
    curr_map_level <- my_leafdown$curr_map_level
    if (curr_map_level == 1) {
      data <- meta_data %>% left_join(gdp_2014_federal_states, by = c("NAME_1" = "Federal_State"))
    } else {
      data <- meta_data %>% left_join(gdp_2014_admin_districts, by = c("NAME_2" = "Admin_District"))
    }

    my_leafdown$add_data(data)
    labels <- create_labels(data, curr_map_level)
    my_leafdown$draw_leafdown(
      fillColor = ~ colorNumeric("Greens", GDP_2014)(GDP_2014),
      weight = 2, fillOpacity = 0.8, color = "grey", label = labels,
      highlight = highlightOptions(weight = 5, color = "#666", fillOpacity = 0.7)
    ) %>% 
      my_leafdown$keep_zoom(input) %>% 
      addLegend("topright",
        pal = colorNumeric("Blues", data$GDP_2014),
        values = data$GDP_2014,
        title = "GDP per capita (2014)",
        labFormat = labelFormat(suffix = "€"),
        opacity = 1
      )
  })
}

Run App

shinyApp(ui, server)